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We shall consider the roblem of constructing the generatrix of a body of 
revolutlon sb (Fig.1 B with mln~rn~ xave drag in nonuniform axisymmetric 
flow. We assume that the free stream as well as coordinates of the points 
a and b are given, and moreover, that an attached shock wave so occurs. 
Let b be a characteristic of the second family, and od of the first 
f amlly . The problem is to be solved under the assumption that in the trian- 
gle ubc the flow is supersonic and there Is no shock wave. 

A similar problem with an attached shock wave has been studied in [l] for 
the case of uniform free stream. For a nonuniform free stream, the problem 
posed has been considered In [23, but an error has been made there. In coun- 
ting the number of conditions and the arbitrary quantities of the problem, 
conditions on the shock wave at the point $ = $, has not been accounted for. 
Instead, the trnsversality condition was used, which is identically satisfied 
at that point because of the extremal conditions and the correlations on the 
shock wave. Consequently, the number of conditions and the arbitrary quan- 
tities coincide, and the incorrect conclusion was drawn that the problem Is 
solvable. 

The gas flow is described by Equations 
U) 

Here x and r are the Cartesian coordinates in the meridional plane of 
flow, 6 is the angle between the velocity vector and the x-axis, w is the 
adiabatic coefficient, w is the absolute magnitude of the velocity, p is 
the gas density, p Is the pressure, and $ Is the stream function; and 

d9 = rpuv (cos bdr - sin 6 dx) 

The free stream is given in the functions w (r,r), po(x,r) and 9, fr,r). 
In what follows, we shall take the functions betore the shock wave as that 
along the shock wave. The coordinates of the shock wave ao will be denoted 
by ~0 and r0 j while those of the characteristic bc by x and P . 

Let x be the wave drag of the body of revolution with generatrlx sb , 
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divided by 2s. 
and bc 

The quantity x is expressed 
with the help of the second equation 

+c 

by contour integrals along cc 
of (1) 

- Wkn 60 cot (0 - 80) - a (a) Cos -6 - + sin a sin (6 - a) dg 

The distance between-the points c and b along the x-axis is also 
expressed by contour integrals along cc and & 

x= CL cos cr 
+ 

cp (0, x0, rO) 
z (a) cos (6 - a) d$ (4) . 

+a 
r”powo sin (a - 6,) I/&r 1 

In Formulas (3) and (4) 
1 1 x+1 

a (a) = 
( 

x+1 7 

x - cos 2a 1 1 z (a) = 
( 

xf ll-cos2a-2x--l 
- 2x x - cos 2a ) ’ pwa sina a = xp 

Here Q is the Mach angle, and u Is the angle of inclination of the 
shock wave to the x-axis. 

The function (p(b,xO,rO ) is determined from (2) by the correlations on 
the shock wave involving the inclination of the shock and the free flow. 
Moreover, on the characteristic bo , we have 

d’+ cp (cf. x0, 77 
d4’ 

- - z (a) sin (6 - a) = 0 
Ifxr 

dti 1 + cos 2a da sin 6 sin a dr -- sin 2ad lncp -- 
d4’ x - cos2a d$ r sin (6 - a) d$ -+~yj$-=O 

The position of the shock wave is defined by Equations 

dr” sin (r dx’ cos tl -- 
d9 r’pcu~c sin (0 - 6,) - -0, -- 

d4’ rOpOwO sin (0 - 6,) = O (7) 

We consider the following variational problem: for given I‘, , pb and x , 
and for a given free flow, to find the functions a (II), 6 (rp), (T ($), r (I/I), x0 ($), 
and +‘($), which render Expression (3) an extremum, while satisfying the iso- 
perimetric condition (4) and the differential equations (5) to (7). Moreover, 
at the point $ = $, , conditions 

a ($c) = a (UC, xc’, pc’), 6 ($c) = 6 (a,, xc07 rcO) 

obtained from the shock wave correlations must be satisfied. 

As free functions we choose Q. and a , and the remaining are connected 
with these by the differential relations. 

Using the method of lagrange multipliers, the problem reduces to one of 
finding the extremum of some functional without conditions. From the vanish- 
ing of the first variation of this functional, we obtain the equations which 
must be satisfied by the functions being sought 

h (X sin 26 + sin 2a) + xh, (1 - cos 26) = O 63) 

Q (u, x0, rO) li (a) cos a - I/G2 (a) r sin2 6 = 0 

y \y;i; (21”‘“*: + g hI sin 6, - (h - 19) cos 6, 
sin (a - 6,) + C (a, 6) ‘Pi’ = O 

dx’ - 
d’t 

- g cos u = 0, $ - gsina = 0 
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Here h, is the constant multiplier, while AI ($), hs (I#), ka (I#) are the 
variable Lagrange multipliers 

1 arp 1 

‘PO - ‘- yacJ* g=Pppo”osin(o-#$ F = gf@ - ha) cos 0 - I, sin (Ij 

~-an a [x sin 6 - cos a sin (6 - a)] 

+ (F - w. cos @& co! (CT - &,) - G (a, 6) cpo’ 

Xa 
4x sina (0 - 6,) + (x - l)a 

4w,a sin” (a - le,) - (x2 - 1) (i - wd”> - 

(x + 1) sin u F 

%I 2x2~~ sin (a - 13,) * 

The Lagrange multiplier, corresponding 
zero i 1 and 31. 

u- X 

Fig. 1 

x3 = 

P -I- G (a, 6) 
PO 

to relation (6), is identical to 

P 

Thus, we have obtained a system of eqvatiolls (8) for the nine unknowns: 
a, 6, 0, x0, P, r, AI, h, and h3 ; as boundary conditions, we have 

a ($, ) =--- X (aC, XCo, r,“), ,O (I#,, == 6 (IJ@ XCS’ r,9 (9) 

r C\rQ = r’ NJ7 2 (l&j z-1: zv<‘, P ($,J - ra’nr r f&j es rb t LD) 

k$ ($J = 0, a, &,I -.-- - 2”s &$I f ri: 

In addition, the functions being sought for must satisfy the isoperimetrfc 
condition (4) and the trahsversallty condition at II; =I!, 
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x+1 -( 1 1 sin u 
2x ‘Co + W, sin (a - 6& - w. sin 6, cot (a - So) - 

- n (a) 
[ 

cos 6 - + siu a sin (6 - a) 
1 

+ 

-t_h 
[ 

g cos a + 
cp (a, m", rO) 

1/G? 
z (a)cos(6 - a) + 

1 

+ I.3 
[ 

gsinoj- ’ (‘;l: “) ‘: (a) sin (2, - a)] = 0 

(12). 

Here conditions ( ) are the correlations on the shock wave at the point 
$, * Conditions (10 follow from examination of Flg.1. Conditions (11) are 
taken, by virtue of the arbitrary choice G f the Lagrange multlpllers, such 
that the first variation of the functional ootalned vanish. In obtaining 
conditions (11) and (12), we used the relationship between the variations 
br at $ - #o and a$, , obtained In the following manner. 
IS obvious that 

From Flg.2, it 

Assume that for a variation of position, the point c move? to '. Then 
the stream line at # = +. Intersects the varied shock wave at c, &d the 
characteristic at C". Letting 

we have 

At the point c', pa= F , Hence, 

Here the double Indices cc 
tlves of r" 

and bo Indicate respectively the derlva- 
along the shock wave co at the point c and the derivative 

r along the char&terlstlc (of the 
second family) bc at the point c 

r a 

45 1J 5 

Fig. 3 

It should be pointed out that the 
transversallty condition (12) IS lden- 
tlcally satisfied by virtue of the 
shock wave correlations and. the first 
two equations of system (8). Thus the 
number of conditions drops by one. 
There are eight arbitrary quantities 
In the functions being determined: six 
of them occur from the six dlfferen- 
tlal equations of (a), and in addition 
there are.two arbitrary quantities X 
and 
(IO),"til) and (4) equals nine. 

The number of condltlon;o~9), 
- 

sequkntlyj the variational problem as 
posed has no solution If a two-sided 
extremum Is being sought for. Ho&ever, 
for some particular relations betyeen 

the quantities Q,, % Pot which characterize the free flow, and also r./x 
and r,/X the problem does admit a solution. This, obviously, occurs when 
the last eiuatlons of system (8) are satisfied at the point I, because of 
the shock wave correlations. Excluding from these equations X and X3, we 
obtain 



(x + 1) (Woo - 1) sin 6, 
70~ sine (a - t3,) +cr(a)uaa 2~,‘Ixsin6--osasin(6-a)]+ 

\ 

+ 
2x sin 6 siu (6, - 6) + sin 2a sin 6, 

sin (a 6) sin (u 6,) -1 z O - - (13) 

The solution of the vroblem exists when Equation (13) Is satisfied at the 
point $ = I, by virtue-of the shock wave correlations,. This means that If 
the free flow Is given In the functions u~,,ff,,,p,,. then Equation (13) deter- 
mines the value of c at the point $. , -sudi;‘that the problem possesses a 
solution. Let some nonuniform flow be given, 
(13) at some point In this flow. 

and let us consider Equation 
The equation has discrete roots. From them 

we must select such values of o , which satisfies the conditions of the 
problem; in other words, the Inclination of the shock must be greater than 
thatofthe Mach line and smaller than that value of c for which the velocity 
behind the shock becomes sonic. If at least one such root Is found, then we 
may draw the extremal shock and characteristic from this point by Integrating 
the system (8). Indeed, if at the point $, the value u is known, then we 
can determine, at that point Q and 6 from the shock wave correlations, 
and then X,, ka and 1, from the last equation of (8). We thus have a Cau- 
chv oroblem. The lntearation must be carried to a value of t which is stln- 
u&ted by the condltlo& of each concrete problem. In addltl;n, a must not‘ 
exceed the value a* at which the velocity behind the shock becomes sonic. 
Should this occur, then the integration can only be carried to the value of 
$ at which o =u*. 

Fig. 4 Fig. 5 

Having constructed the shock wave co and the characteristic bc satls- 
fying the Euler equations (8), the flow calculations may then be carried out 
by the method of characteristic&. We first solve the Cauchy problem for the 
gas dynamic equations (1) and (2) with data on the shock wave ac , which 
permits the determination of the characteristic cd ; then we solve the 
Goursat problem with data on the characteristics cd and h . All the 
streamlines ($ = const) are the desired profiles. 

In Fig. 3, 4 and 5 are shown examples of analysis of the inner wall of 
the lip of supersonic center-body diffusers, having extremal wave drag. 
In the above examples a cone is taken as the center-body. In the figures, 
the following notation is used: co is the cone generatrlx, oc is the 
conical shock, ac is the shock corresponding to the extremum condition, 
bc is the characteristic of the first family, and ab is the profile being 
sought for. In the examples the generatrix of the outerwallofthe diffusor lip 
ad is taken to be an arbitrary straight line. Also exhibited are the values 
of (CD - drag coefficient) 
quangity c, refers to the area 

for t.e cone and for the inner wall. The 
In the cases of H = 3 and ,4! = 5 , 

the angle & Is zero on the charIz$eristic bc 
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In conclusion, the author thanks 1u.D. Shmyglevskli for his great help 
in this paper. 
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