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We shall consider the problem of constructing the generatrix of a body of
revolution g¢» (Fig.l) with minimum wave drag in nonuniform axisymmetric
flow. We assume that the free stream as well as coordinates of the points

o and » are given, and moreover, that an attached shock wave ge occurs,
Let »e be a characterilstic of the second family, and e¢d of the first
family. The problem is to be solved under the assumption that in the trian-
gle gbe the flow 1s supersonic and there 1s no shock wave,

A similar problem with an attached shock wave has been studled in [1] for
the case of uniform free stream. For a nonuniform free stream, the problem
posed has been considered in [2], but an error has been made there. In coun-
ting the number of conditions and the arbltrary quantities of the problem,
conditions on the shock wave at the polnt § = §, has not been accounted for.
Instead, the trnsversallty condition was used, which 1s ldentically satisfiled
at that point because of the extremal conditions and the correlations on the
shock wave. Consequently, the number of conditions and the arbltrary quan-
titles coincide, and the incorrect conclusion was drawn that the problem 1s
solvable.

The gas flow 1s described by Equatlons
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Here x and » are the Carteslian coordinates in the meridional plane of
flow, © 1is the angle between the veloclity vector and the x-axls, » 1s the
adiabatic coefficlent, y 1is the absolute magnitude of the veloeclty, o 1s
the gas density, p 1s the pressure, and § 1s the stream functlon; and

dp = rpw (cos §dr — sin & dx)

The free stream is given in the functions y {x,r), polx,r) and & (x,r).
In what follows, we shall take the functions be%ore the shock wave as that
along the shock wave. The coordinates of the shock wave gg will be denoted
by x° and r°, while those of the characteristic ¢ by x and r .

Let x be the wave drag of the body of revolution with generatrlix gbd ,
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dlvided by 2r . The quantity y 1s expressed by contour integrals along ge
and »e with the help of the second equation of (1)
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The distance between the points o and » along the y-axls is also
expressed by contour integrals along ge¢ and B»e

be
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In Formulas (3) and (4)
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Here o 1s the Mach angle, and ¢ 1s the angle of inclination of the
shock wave to the x-axls.

The function ofe,x°,r°) is determined from (2) by the correlations on
the shock wave involving the inclination of the shock and the free flow.
Moreover, on the characteristic »e , we have
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The position of the shock wave 1is defined by Equations
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We consider the following varlational problem: for given r,, r, and X,
and for a given free flow, to find the functions a (), O (}), ¢ ﬂw, rﬁw, z° (V),
and r°(}), which render Expression (3) an extremum, while satisfying the iso-
perimetric condition (4) and the differential equations (5) to (7). Moreover,
at the point v =P, conditions
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obtalned from the shock wave correlations must be satisfiled.

As free functions we choose g and ¢ , and the remaining are connected
with these by the differential relatlons.

Using the method of lagrange multipliers, the problem reduces to one of
finding the extremum of some functlonal without conditlions. From the vanish-
ing of the first varlation of this functional, we obtain the equations which
must be satisfled by the functions being sought
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Here ) 1is the constant multiplier, while Ay ({), Ay (), A3 (§) are the
variable Lagrange multipliers
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The Lagrange multiplier, corresponding to relation (6), is ldentical to
zero [1 and 3].

r c

Fig. 1

Thus, we have cbtained & system of equations {8) for the nine unknowns:
a, ¢, 0, 2° ° r, A, A and A, ; as boundary conditlons, we have
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In addition, the functlons being sought for must satlsfy the isoperimetric
condition (4) and the trahsversality condition at ¢ =1,
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Here conditions (?) are the correlatlons on the shock wave at the point

¥. . Conditions (10) follow from examination of Flg.l. Conditlons (11) are

taken, by virtue of the arbitrary choice of the Lagrange multipliers, such
that the first varlation of the functional votained vanish. In obtaining
conditions (11) and (12), we used the relationship between the variations

8r at y =y, and by., obtained in the following manner. From Fig.2, it
is obvious that
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Assume that for a variation of position, the point o moves to o’. Then
the stream line at ¢ = y, intersects the varied shock wave at ¢, znd the
characteristic at »”. Letting

re o — I, == or° I")=¢,c
we have
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At the point ¢, r°=r . Hence,
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Here theodouble indices g¢ and pe 1indicate respectively the deriva-
tives of r along the shock wave ge¢ at the point , , and the derivative
r along the characteristic (of the
second family) b»e at the point o

Y, S 4, It should be pointed out that the

' a > transversality condition (12) is iden-
tically satisfled by virtue of the

‘4 shock wave correlations and the first

two equations of system (8). Thus the
- number of conditions drops by one.
05t 7 There are elght arbitrary quantities
J'?[ . 202703 in the functions belng determined: six
A Free ™ of them occur from the six differen-
7 (Cz)us= 009/ tial equations of (8), and in addition
7 there are two arbitrary quantities )

and y_.. The number of conditions (9),
L L (10), 111) and (4! equals nine. Con-
J 95 74 Zz sequently, the variational problem as
Fi posed has no solution if a two-sided
€. 3 extremum is belng sought for. However,

for some partizular relations between
the quantities uwy, ¥y, py, which characterize the free flow, and also r./x
and r,/k , the problem does admit a solutlon. This, obviously, occurs when
the last equations of system (8) are satisfied at the point y§, because of
the shock wave correlations. Excluding from these equations 1 and 1i,, we
cbtain
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The solution of the problem exists when Equation (13) is satisfied at the
point § = §., by virtue of the shock wave correlations. This means that if
the free flow is given in the functions wy, ¥y, pg, then Equation (13) deter-
mines the value of ¢ at the point 4§, , such that the problem possesses a
solution. Let some nonuniform flow be given, and let us consider Equation
(13) at some point in this flow. The equation has discrete roots. From them
we must select such values of ¢ , which satisfies the conditions of the
problem; 1in other words, the inclination of the shock must be greater than
that of the Mach line and smaller than that value of o for which the velocity
behind the shock becomes sonic. If at least one such root is found, then we
may draw the extremal shock and characteristic from this point by integrating
the system (8). Indeed, if at the point ¥, the value ¢ 1s known, then we
can determine, at that point ¢ and ¢ from the shock wave correlations,
and then A,, A, and 1, from the last equation of (8). We thus have a Cau-
chy problem. The integration must be carrled to a value of § which 1is stip~
ulated by the conditions of each concrete problem. In addition, ¢ must not
exceed the value g* at which the velocity behind the shock becomes sonic.
Should this occur, then the integration can only be carried to the value of
¥ at which o = o*.
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Having constructed the shock wave g¢ and the characteristic pc satis-
fying the Euler equations (8), the flow calculations may then be carried out
by the method of characteristicd, We first solve the Cauchy problem for the
gas dynamic equations (1) and (2) with data on the shock wave a¢ , which
permits the determination of the characteristic e¢d ; then we solve the
Goursat problem with data on the characteristics ¢4 and pe . All the
streamlines (¢ = const) are the deslired profiles.

In Fig. 3, 4 and 5 are shown examples of analysis of the inner wall of
the lip of supersonic center-body diffusers, having extremal wave drag.
In the above examples a cone 1s taken as the center-body. In the figures,
the following notation i1s used: o¢ 18 the cone generatrix, oe¢ 1s the
conical shock, ae 1s the shock corresponding to the extremum condition,
be 1s the characteristic of the first family, and gb 1s the profile being
sought for. In the examples the generatrix of the outer wall of the diffusor 1lip
ad 1s taken to be an arbitrary straight line. Also exhibited are the values
of ¢, (¢p — drag coefficlent) for the cone and for the inner wall. The
quantity ¢, refers to the area mre®. In the cases of ¥ =3 and ¥ =5,
the angle § 1s zero on the characteristic b¢
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In conclusion, the author thanks Iu.D. Shmyglevskii for his great help
in thls paper.
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